New Models with Blanking Function Added to the Series

- Single-color (red or green) and two-color (red or green selectable) displays with a character height of 14 mm are available for a variety of applications and locations.
- Miniature design with a $43-\mathrm{mm}$ depth is perfect for saving space in equipment and devices.
- Wide-range power supply from 12 to 24 VDC.
- Negative sign (-) display with signal codes is possible for Decimal-display Models.

- Models with zero suppression function available.

Model Configuration

Unit Configuration

Ordering Information

List of Models

Displaycontents	Display color	Type	Model	
			Model with Zero Suppression (See note 1.)	Model with Blanking (See note 2.)
± 1	Red	Positive	---	M7E-01BRP2
		Negative	---	M7E-01BRN2
		Dynamic output	---	M7E-01BRD2
	Green	Positive	---	M7E-01BGP2
		Negative	---	M7E-01BGN2
		Dynamic output	---	M7E-01BGD2
Decimal 8	Red	Positive	M7E-01DRP2	M7E-01DRP2-B
		Negative	M7E-01DRN2	M7E-01DRN2-B
		Dynamic output	M7E-01DRD2	M7E-01DRD2-B
	Green	Positive	M7E-01DGP2	M7E-01DGP2-B
		Negative	M7E-01DGN2	M7E-01DGN2-B
		Dynamic output	M7E-01DGD2	M7E-01DGD2-B
	Red/green (two colors)	Negative	M7E-01DRGN2	M7E-01DRGN2-B
Hexadecimal	Red	Positive	M7E-01HRP2	M7E-01HRP2-B
		Negative	M7E-01HRN2	M7E-01HRN2-B
	Green	Positive	M7E-01HGP2	M7E-01HGP2-B
		Negative	M7E-01HGN2	M7E-01HGN2-B

Connectable PLCs

M7E model		PLC output method		
Displaycontents	Type	Static output		$\begin{array}{\|c} \text { Dynamic } \\ \text { output } \end{array}$
		$\begin{gathered} \text { PNP } \\ \text { output } \end{gathered}$	NPN output	
$\begin{array}{\|l\|} \hline \pm 1, \\ \text { decimal } \end{array}$	Positive	\bigcirc	\triangle	\triangle
	Negative	\times	\bigcirc	\times
	Dynamic output	\times	\times	\bigcirc
Hexadecimal	Positive	\bigcirc	\triangle	\triangle
	Negative	\times	\bigcirc	\times
Unit	---	O (only voltage imposed)		

O: Connectable
x : Not connectable
\triangle : Connectable (See note.)
Note: Connectable but an external resistor is required and only 24 VDC must be supplied.
Refer to External Connections on page 9 and 10 for details.

Display contents	Display color	Logic	Model
Unit	Red	---	M7E-01UR2- (See note 3.)
	Green	---	M7E-01UG2- (See note 3.)

Accessories (Order Separately)

End Plate

Case color Item	Model
Light gray	M7E-012M
Black	M7E-012M-1

Note: The Right and Left Plates form a pair.
Spacer

Case color \quad Item	Model
Light gray	M7E-012PA
Black	M7E-012PA-1

Note: 1. Models with zero suppression are blank only when the display is and the decimal is OFF by wiring as shown on page 12.
2. Models with blanking enable turning OFF a user-specified display (5 to $9, F$ to F) by inputting a signal to the blank input terminal.
3. The symbol in the box (\square) indicates the code for the display contents. Refer to page 13.
Connector

Terminal	Model
Solder terminal	NRT-C
Solder terminal	NRT-CN
PCB terminal	NRT-CP

Mother Board

Type	Number of digits	Model
Static	4	M7E-01MB4-S2
Static	3	M7E-01MB3-S2
Static	2	M7E-01MB2-S2

Note: Refer to M7E Mother Board for Display Units (Character Height: 14 mm) for details.

Specifications

Ratings

Rated power supply		Wide range from 12 to 24 VDC
Allowable voltage fluctuation range		90\% to 110% of rated voltage
Current consumption (per Display Unit)		Red LED: 35 mA max. at 24 VDC 60 mA max. at 12 VDC Greed LED: 40 mA max. at 24 VDC 75 mA max. at 12 VDC Red/green LED: 45 mA max. at 24 VDC 90 mA max. at 12 VDC
Input level	Positive logic	High: 9.6 V to power supply voltage Low: 0 to 3 V
	Negative logic	High: 4 V to power supply voltage Low: 0 to 1.5 V Residual voltage: 1.5 V max. OFF leakage current: 0.1 mA max.
	Dynamic output	High: 4 V to power supply voltage Low: 0 to 1.5 V
Ambient temperature		Operating: -10 to $55^{\circ} \mathrm{C}$ (with no icing) Storage: -25 to $70^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity		Operating: 35% to 85% (with no condensation)

Characteristics

Insulation resistance	$100 \mathrm{M} \Omega$ min. at 500 VDC (between each terminal and mounting panel)
Dielectric strength	500 VAC at $50 / 60 \mathrm{~Hz}$ for 1 minute (between each terminal and mounting panel)
Noise immunity (See note 2.)	Power terminal: $\pm 500 \mathrm{~V}$ Input terminal: $\pm 500 \mathrm{~V}$ (normal mode) $\pm 1,500 \mathrm{~V}$ (common mode)
Vibration resistance	Destruction: 10 to $55 \mathrm{~Hz}, 0.75-\mathrm{mm}$ double amplitude
Shock resistance	Destruction: $300 \mathrm{~m} / \mathrm{s}^{2}$
Degree of protection	IEC IP40 (portion on panel surface)
Compatible connector	OMRON NRT-C/NRT-CN/NRT-CP

Note: 1. The above values are initial values.
2. Impulse conditions

Rise time: $1 \mathrm{~ns}+10 \%$ max.
Pulse width: $100 \mathrm{~ms}, 1 \mu \mathrm{~s}$
Polarity: Positive, negative, asynchronous to power frequency, $100-\mathrm{Hz}$ repeat frequency.

Installation

Terminal Arrangements and Functions

Terminal Arrangement

Note: The circled numbers are the connector pin numbers (NRT- \square).

```
\(\pm 1\). Display Unit
M7E-01B \(\square \square 2\)
```


Unit Display Unit
M7E-01U $\square 2-\square$

Decimal/Hexadecimal Display Unit (Single Color)
Models with Zero Suppression
M7E-01D $\square \square 2 / M 7 E-01 H \square \square 2$
Models with Blanking
M7E-01D $\square \square 2-B / M 7 E-01 H \square \square 2-B$

Decimal Display Unit (Two Colors)
Models with Zero Suppression M7E-01DRGN2

Models with Blanking
M7E-01DRGN2-B

Note: 1. The latch terminal on ± 1. Display Units is provided only on Dynamic Output Models.
2. The terminal numbers of the Unit Display Unit are different from the terminal numbers of the connector.

Terminal Functions

	Name	Function		
		Decimal/Hexadecimal Display Unit		\pm Display Unit
		Models with Zero Suppression	Models with Blanking	
V	Power supply	Positive power supply input terminal		
RBO	Control output	Zero-suppress output (See note 1.)	---	---
RBI	Control input	Zero-suppress output (See note 1.)	Blanking input (Turns OFF all the displays including decimal point.)	---
BI	Control input	---	---	Blanking input (Turns OFF all the displays including decimal point.)
 A B C D	Data inputs	Applicable to Decimal/ Hexadecimal Display Unit A $\left(2^{0}\right)$ B $\left(2^{1}\right)$ C $\left(2^{2}\right)$ D $\left(2^{3}\right)$ Displays a digit or symbol corresponding to the value of the binary code signal. Decimal display uses 0 to $9 ;$ nothing will be displayed for higher values.		---
1+-	Data inputs	---	---	Applicable to ± 1. Display Unit only For each input terminal, the input of a signal causes a display to light.
DP	Data inputs	The decimal point lights.		
LE	Control input	Latch input The immediately preceding display condition is retained.		
R/G	Control input	Color selection input (See note 2.) Set low for green display and high for red display.		---
G	Power supply	O-V power-supply (ground) input terminal (GND)		

Decimal/Hexadecimal Display Unit (Single-color Models with Zero Suppression)

Decimal/Hexadecimal Display Unit (Single-color Model with Blanking)

Note: 1. Refer to the input code table for RBO and RBI control.
2. Applicable to the M7E-01DRGN2 and -01DRGN2-B only.

- Input Codes

± 1. Display Unit

Positive Logic (M7E-01BRP2/M7E-01BGP2)

	Input signal					Displayconditions
Connector pin No.	(9)	(7)	(6)	(8)	(4)	
Terminal symbol	BI	+	-	1	DP	
Input signals	L	L	L	L	L	Blank
	L	H	L	L	L	\div
	L	L	H	L	L	-
	L	L	L	H	L	i
	L	L	L	L	H	.
	H	*	*	*	*	Blank (See note.)

Note: BI takes precedence over any input signal.

* Either high or low.

Unit Display Unit

This display lights when voltage is applied to the power supply terminals (V and G).

V-G terminals	Display
Open circuit	Blank
Voltage applied	Lit

Negative Logic (M7E-01BRN2/M7E-01BGN2)

	Input signal					Display conditions
Connector pin No.	(9)	(7)	(6)	(8)	(4)	
Terminal symbol	BI	+	-	1	DP	
Input signals	H	H	H	H	H	Blank
	H	L	H	H	H	\pm
	H	H	L	H	H	-
	H	H	H	L	H	1
	H	H	H	H	L	-
	L	*	*	*	*	Blank (See note.)

Note: BI takes precedence over any input signal.

* Either high or low.

Decimal/Hexadecimal Display Unit

Models with Zero Suppression

Positive logic (M7E-01DRP2/M7E-01DGP2/M7E-01HRP2/ M7E-01HGP2)

	Input							Out-	Display condition	
Connector pin No.	(3)	(5)	(6)	(7)	(8)	(4)	(9)	(10)		
Terminal number	3	5	6	7	8	4	9	10		
Terminal symbol	LE	D	C	B	A	DP	RBI	RBO	Decimal	Hexadecimal
Input signals	L	L	L	L	L	L	L	L	0	
	L	L	L	L	H	L	*	L	1	
	L	L	L	H	L	L	*	L	2	
	L	L	L	H	H	L	*	L	3	
	L	L	H	L	L	L	*	L	4	
	L	L	H	L	H	L	*	L	5	
	L	L	H	H	L	L	*	L	5	
	L	L	H	H	H	L	*	L	7	
	L	H	L	L	L	L	*	L	8	
	L	H	L	L	H	L	*	L	9	
	L	H	L	H	L	L	*	L	-	9
	L	H	L	H	H	L	*	L	Blank	b
	L	H	H	L	L	L	*	L	Blank	$[$
	L	H	H	L	H	L	*	L	Blank	d
	L	H	H	H	L	L	*	L	Blank	E
	L	H	H	H	H	L	*	L	Blank	F
	L	*	*	*	*	H	*	L	.	
	*	L	L	L	L	L	H	H	Blank (See note.)	
	H	*	*	*	*	*	*	*	Retains the display conditions of A through D and DP terminals before LE goes high. RBI is not related.	

Note: The display will go blank when the data input is " 0 " and the DP is OFF.

* Either high or low

Negative logic (M7E-01DRN2/M7E-01DGN2/M7E-
01DRGN2/M7E-01HRN2/M7E-01HGN2)

	Input							Out-	Display condition	
Connector pin No.	(3)	(5)	(6)	(7)	(8)	(4)	(9)	(10)		
Terminal number	3	5	6	7	8	4	9	10		
Terminal symbol	LE	D	C	B	A	DP	RBI	RBO	Decimal	Hexadecimal
Input signals	H	H	H	H	H	H	H	H	0	
	H	H	H	H	L	H	*	H	1	
	H	H	H	L	H	H	*	H	2	
	H	H	H	L	L	H	*	H	3	
	H	H	L	H	H	H	*	H	4	
	H	H	L	H	L	H	*	H	5	
	H	H	L	L	H	H	*	H	5	
	H	H	L	L	L	H	*	H	7	
	H	L	H	H	H	H	*	H	8	
	H	L	H	H	L	H	*	H	9	
	H	L	H	L	H	H	*	H	-	9
	H	L	H	L	L	H	*	H	Blank	b
	H	L	L	H	H	H	*	H	Blank	[
	H	L	L	H	L	H	*	H	Blank	d
	H	L	L	L	H	H	*	H	Blank	E
	H	L	L	L	L	H	*	H	Blank	F
	H	*	*	*	*	L	*	H	.	
	*	H	H	H	H	H	L	L	Blank (See note.)	
	L	*	*	*	*	*	*	*	Retains the display conditions of A through D, DP and R/G terminals before LE goes low. RBI is not related.	

Note: The display will go blank when the data input is " 0 " and the DP is OFF.

* Either high or low

Models with Blanking

Positive logic (M7E-01DRP2-B/M7E-01DGP2-B/M7E-01HRP2-B/M7E-01HGP2-B)

	Input							Display condition	
Connector pin No.	(3)	(9)	(5)	(6)	(7)	(8)	(4)		
Terminal number	3	9	5	6	7	8	4		
Terminal symbol	LE	RBI	D	C	B	A	DP	Decimal	Hexadecimal
Input	L	L	L	L	L	L	L	0	
	L	L	L	L	L	H	L		
	L	L	L	L	H	L	L	c	
	L	L	L	L	H	H	L	3	
	L	L	L	H	L	L	L	4	
	L	L	L	H	L	H	L	5	
	L	L	L	H	H	L	L	5	
	L	L	L	H	H	H	L		
	L	L	H	L	L	L	L		
	L	L	H	L	L	H	L		
	L	L	H	L	H	L	L	-	9
	L	L	H	L	H	H	L	Blank	b
	L	L	H	H	L	L	L	Blank	[
	L	L	H	H	L	H	L	Blank	d
	L	L	H	H	H	L	L	Blank	ε
	L	L	H	H	H	H	L	Blank	F
	*	L	*	*	*	*	H		
	*	H	*	*	*	*	*	Blank (S	note.)
	H	L	*	*	*	*	*	Retains the conditions of terminals be high. DP is n	play through D LE goes related.

Note: RBI takes precedence over any input signal.

* Either high or low

Negative logic (M7E-01DRN2-B/M7E-01DGN2-B/M7E-01DRGN2-B/M7E-01HRN2-B/M7E-01HGN2-B)

	Input							Display condition	
Connector pin No.	(3)	(9)	(5)	(6)	(7)	(8)	(4)		
Terminal number	3	9	5	6	7	8	4		
Terminal symbol	LE	RBI	D	C	B	A	DP	Decimal	Hexadecimal
Input signals	H	H	H	H	H	H	H	0	
	H	H	H	H	H	L	H	1	
	H	H	H	H	L	H	H	2	
	H	H	H	H	L	L	H	3	
	H	H	H	L	H	H	H	4	
	H	H	H	L	H	L	H	5	
	H	H	H	L	L	H	H	5	
	H	H	H	L	L	L	H	7	
	H	H	L	H	H	H	H	8	
	H	H	L	H	H	L	H	9	
	H	H	L	H	L	H	H	-	9
	H	H	L	H	L	L	H	Blank	b
	H	H	L	L	H	H	H	Blank	5
	H	H	L	L	H	L	H	Blank	d
	H	H	L	L	L	H	H	Blank	E
	H	H	L	L	L	L	H	Blank	F
	*	H	*	*	*	*	L	-	
	*	L	*	*	*	*	*	Blank (See note.)	
	L	H	*	*	*	*	*	Retains the display conditions of A through D, and R / G terminals before LE goes low. DP is not related.	

Note: RBI takes precedence over any input signal.

* Either high or low

Models with Dynamic Outputs

± 1. Display Unit

(M7E-01BRD2/M7E-01BGD2)

	Input						Display condition
Connector pin No.	(3)	(9)	(7)	(6)	(8)	(4)	
Terminal symbol	LE	BI	+	-	1	DP	
Input signals	L	H	L	L	L	H	Blank
	L	H	H	L	L	H	\div
	L	H	L	H	L	H	-
	L	H	L	L	H	H	i
	*	H	*	*	*	L	.
	*	L	*	*	*	*	Blank (See note.)
	H	H	*	*	*	*	

Note: BI takes precedence over any input signal.

* Either high or low

Decimal Display Unit

Models with Zero Suppression (M7E-01DRD2/M7E01DGD2)

	Input							Out-	Display condition
Connector pin No.	(3)	(5)	(6)	(7)	(8)	(4)	(9)	(10)	
Terminal number	3	5	6	7	8	4	9	10	
Terminal symbol	LE	D	C	B	A	DP	RBI	RBO	
Input signals	L	L	L	L	L	H	L	L	5 (See note 1.)
	L	L	L	L	H	H	*	L	1
	L	L	L	H	L	H	*	L	2
	L	L	L	H	H	H	*	L	3
	L	L	H	L	L	H	*	L	4
	L	L	H	L	H	H	*	L	5
	L	L	H	H	L	H	*	L	5
	L	L	H	H	H	H	*	L	7
	L	H	L	L	L	H	*	L	g
	L	H	L	L	H	H	*	L	9
	L	H	L	H	L	H	*	L	-
	L	H	L	H	H	H	*	L	Blank
	L	H	H	L	L	H	*	L	Blank
	L	H	H	L	H	H	*	L	Blank
	L	H	H	H	L	H	*	L	Blank
	L	H	H	H	H	H	*	L	Blank
	L	*	*	*	*	L	*	L	-
	*	L	L	L	L	H	H	H	Blank (See note 2.)
	H	*	*	*	*	*	*	*	Retains the display conditions of A through D, and DP terminals before LE goes high. RBI is not related.

Note: 1. Input low for RBI when data " 0 " is displayed. RBI will go high in open mode and the zero suppression will function.
2. The display will go blank when the data input is " 0 " and the DP is OFF.

* Either high or low

Models with Blanking (M7E-01DRD2-B/M7E-01DGD2-B)

	Input							Display condition
Connector pin No.	(3)	(9)	(5)	(6)	(7)	(8)	(4)	
Terminal number	3	9	5	6	7	8	4	
Terminal symbol	LE	RBI	D	C	B	A	DP	
Input signals	L	H	L	L	L	L	H	5
	L	H	L	L	L	H	H	1
	L	H	L	L	H	L	H	2
	L	H	L	L	H	H	H	3
	L	H	L	H	L	L	H	4
	L	H	L	H	L	H	H	5
	L	H	L	H	H	L	H	5
	L	H	L	H	H	H	H	7
	L	H	H	L	L	L	H	\square
	L	H	H	L	L	H	H	9
	L	H	H	L	H	L	H	-
	L	H	H	L	H	H	H	Blank
	L	H	H	H	L	L	H	Blank
	L	H	H	H	L	H	H	Blank
	L	H	H	H	H	L	H	Blank
	L	H	H	H	H	H	H	Blank
	*	H	*	*	*	*	L	.
	*	L	*	*	*	*	*	Blank (See note.)
	H	H	*	*	*	*	*	Retains the display conditions of A through D terminals before LE goes high. DP is not related.

Note: RBI takes precedence over any input signal.

* Either high or low

Block Diagram
Note: Circled numbers are the board terminal numbers.

Note: The terminal numbers of the Unit Display Unit are different from the terminal numbers of the connector. Refer to Terminal Arrangements and Functions on page 3 for details.

External Connections

Refer to the Terminal Arrangement on page 3 and the Block Diagram on page 8 for external connections for each unit.

Example of connection to a PLC.

- Refer to the PLC operation manual before connecting the PLC.
- The number of wires can be reduced by using a PLC with dynamic outputs.

Static Output Unit

1. M7E-01 \square P2 Positive Logic Model Use a PNP Transistor Output Unit for the PLC Output Unit.

Connected to C500-OD212 Transistor Output Unit

2. M7E-01 \square N2 Negative Logic Model Use an NPN Transistor Output Unit for the PLC Output Unit.

Connected to C500-OD213 Transistor Output Unit

Using Dynamic Output Units

1. M7E-01 \square D2 Dynamic Output Model
2. Connected to C500-OD211 Transistor Output Unit

3. Connected to C200-OD215 Transistor Output Unit
 OD215, the selector on the rear cover of the C200H-OD21 must be set as follows:

SW1 (dynamic output mode)	ON
SW2	OFF
SW3	OFF
SW4	OFF
SW5 (positive logic output)	ON
SW6	OFF

2. Refer to the C 200 H Highdensity l/O Unit operation and refer to the hardware section of the C500 operation
manual for the C500-OD211.
3. M7E-01 $\square \square \mathbf{P} 2$ Positive Logic Model An external pull-up resistor is required.

Connected to C500-OD211 or C200H-OD215

Note: 1. Supply 24 VDC only. The PLC does not operate with the M7E Negative Logic Model.
2. The resistance of the pullup resistor is 2.0 to $3.9 \mathrm{k} \Omega$ (1 W). A resistance of $3.3 \mathrm{k} \Omega$ is recommended.

Operation

Operation Timing (Input Signal Timing)

Positive Logic

Negative logic

Pulse duration (tw)	1.5 ms min.
Hold time (th)	0.75 ms min.
Setup time (ts)	2.25 ms min.

Operation Chart

- The following example shows the relationship between each input terminal signal and the display condition for a Negative-logic Decimal Display Unit with Blanking.

- Using the latch input (LE) terminal for each Unit, the data input terminals (A to D) can be used in common yet still enable display on each Unit (example of a 3-digit dynamic-output model with positive logic).

Example of Zero Suppression Usage: Description Using Negative Logic Model

The zero suppression function operates when the display is \boldsymbol{B}, RBI is low and the decimal point is not lit.

Example 1: The RBI input and RBO output of each digit are open when zero suppression is not being used.
Example 2: Wired as shown to display only 5 for the rightmost digit when zero suppression is being used.
Example 3: Zeros are suppressed only for the digits on the left of the digit where the decimal is lit when both zero suppression and a decimal point are being used.
Example 4: Zeros are suppressed to the right of the first digit below the decimal point when both zero suppression and a decimal point are being used. If the first-to-fourth-digit values are all 0 and the decimal point is lit at the fourth digit, $0.0 \square \square$ will be displayed. (There is no data in $\square \square$.)

Note: Use RBO output for the RBI input connection only.

Example 2

Example 4

Dimensions

Note: All units are in millimeters unless otherwise indicated.
M7E-01 $\square \square \square \square 2$

Values in parentheses are for the two-color (red and green) Digital Display Units.

Accessories (Order Separately)

End Plate

M7E-012M(-1)

Note: Tolerance is $\pm 0.4 \mathrm{~mm}$ unless otherwise specified.

Connector

NRT-C Soldered Terminal

NRT-CN Soldered Terminal

Spacer
M7E-012PA(-1)

Face Plate

- The required face plate is used with the Unit Display Unit, which incorporates a surface-lighting LED.
- The following face plates are available. When ordering the M7E-01U $\square 2$ - ${ }^{*}$, add the suffix according to your requirement.
- Custom face plates can be made. For the procedure to make face plates, refer to M7E Mother Board for Display Units (Character Height: 14 mm).

Symbol	A	B	C	D	E	F	G	H	J	JC1	K	V	Z1	Z2
Display contents	$\begin{aligned} & \text { Blank } \\ & \text { display } \end{aligned}$	SEC	IIIII	I		KO	IIIII	CII	III	m/minili	${ }^{\circ} \mathrm{C}$	Fiom	$\%$	pomil

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .
In the interest of product improvement, specifications are subject to change without notice.

Read and Understand This Catalog

Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranty and Limitations of Liability

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.

In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.
IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Considerations

SUITABILITY FOR USE

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the products.

At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:

- Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this catalog.
- Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
- Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.
NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PROGRAMMABLE PRODUCTS
OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

Disclaimers

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other reasons.
It is our practice to change model numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the products may be changed without any notice. When in doubt, special model numbers may be assigned to fix or establish key specifications for your application on your request. Please consult with your OMRON representative at any time to confirm actual specifications of purchased products

DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

PERFORMANCE DATA

Performance data given in this catalog is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

ERRORS AND OMISSIONS

The information in this document has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.

